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Abstract—Bitcoin, the arguably most popular cryptocurrency
to date, allows users to perform transactions using freely
chosen pseudonymous addresses. Previous research, however,
suggests that these pseudonyms can easily be linked, implying
a lower level of privacy than originally expected. To obfuscate
the links between pseudonyms, different mixing methods have
been proposed. One of the first approaches is the CoinJoin
concept, where multiple users merge their transactions into
one larger transaction. In theory, CoinJoin can be used to
mix and transact bitcoins simultaneously, in one step. Yet,
it is expected that differing bitcoin amounts would allow an
attacker to derive the original single transactions. Solutions
based on CoinJoin therefore prescribe the use of fixed bitcoin
amounts and cannot be used to perform arbitrary transactions.

In this paper, we define a model for CoinJoin transac-
tions and metrics that allow conclusions about the provided
anonymity. We generate and analyze CoinJoin transactions and
show that with differing, representative amounts they generally
do not provide any significant anonymity gains. As a solution
to this problem, we present an output splitting approach that
introduces sufficient ambiguity to effectively prevent linking
in CoinJoin transactions. Furthermore, we discuss how this
approach could be used in Bitcoin today.

1. Introduction

In the past years, Bitcoin [1] received a growing interest
from academics and commercial entities [2]. Using a peer-
to-peer (P2P) network, it requires no trust in a central
authority and makes successful double spending unlikely,
as long as most computation power belongs to honest peers.
Even if an attacker amasses the majority of the computation
power, no funds can be stolen without access to the wallets.
Public keys are used as unlimited expendable pseudonyms,
suggesting that it can be used anonymously.

However, research shows that the pseudonyms can be
linked and if one pseudonym of a user leaks, the others
can be inferred [3], [4], [5], [6], [7]. This is even worse
since the record of all transactions that are used to perform
the linking are public. Analyzing transactions is therefore
possible for anybody and might endanger, e.g., human rights
organizations in oppressive regimes. If Bitcoin is to be used
as currency, this problem must be solved.
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Many approaches to increase the anonymity in a pro-
cess called mixing were proposed [8], [9], [10], [11], [12].
However, they generally have to be performed in addition
to normal transactions, leading to extra delay and fees.
CoinJoin is an concept that could be used to perform
mixing and transactions in a single step. As Bitcoin does not
require transactions to be issued by a single person, multiple
users can combine their transactions into a larger CoinJoin
transaction. Several implementations exist [12], [13], that fa-
cilitate the creation of these CoinJoin transactions. However,
until recently they all required the users to transfer the same
amount of bitcoins, for fear that otherwise the pseudonyms
might be linked using the distinct coin values.

In this paper, we investigate the linkability of
pseudonyms in CoinJoin transactions. Qur main contri-
butions are: 1) We show that naive CoinJoin transactions
with arbitrary, commonly used amounts allow linking of
pseudonyms. 2) Based on a concept called knapsack mix-
ing[14], [15], we present novel output splitting algorithms
that hinder linking. 3) We show that the computational dif-
ficulty of analyzing knapsack mixed CoinJoin transactions
alone might provide enough anonymity, and that even if the
analysis is performed, only a small number of pseudonyms
can reliably be linked.

As our approach allows arbitrary values in CoinJoin
transaction, Bitcoin mixing and coin transfer can now be
performed in a single transaction. In contrast to previous
approaches this reduces delay, fees, and allows to perform
mixing on each transaction. Finally, we describe how our
knapsack mixing algorithm could be used to build a full
P2P mixing protocol, using existing techniques [16], [17].

2. Fundamentals

In this section, we provide a short overview of relevant
aspects of Bitcoin, and briefly explain the heuristics used in
Bitcoin deanonymization and the CoinJoin concept.

In Bitcoin, each transaction consists of input coins that
are spent, and output coins that are created. Each input is a
reference to an output, that was previously created in another
transaction, recording that this output is now spent. This
way, double spending is prevented. Through this referencing,
the transactions and coins form a large graph. An example
excerpt of this graph is shown in Figure 1.
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Figure 1: Example of two Bitcoin transactions. Input ¢; of
transaction 2 references output o, of transaction 1, recording
that it is spent.

The transactions are collected into blocks, by Bitcoin
users called miners. Additionally to the transactions, each
block contains the checksum of the previous block and a
nonce. The nonce is randomly chosen so that the checksum
of the block is lower than a specific target value in a process
called mining. As each block references its precursor, all
blocks form a linked list, the so called blockchain.

Each coin has a short program attached, called script.
Whoever can provide a valid input to the script, can spent
the coin. Usually, the program checks whether the spender
possesses a specific private key, by including the correspond-
ing public key. The public key, called Bitcoin address, can
be thought of as the owner of the coin.

Once created, coins have a fixed value and can’t be split
or merged freely. This means, that to send a certain amount
of bitcoins, possibly more than one coin must be spend. In
turn, if coins of a higher value are spent then what should be
transferred, the change must be returned in an extra output.
Therefore, more than one coin as input and at least two
coins as outputs is the norm. This led to heuristics that are
used to analyze the transaction graph [3], [4]. Even though
new Bitcoin addresses can be generated for each new coin,
they can now be linked and attributed to the same user.

The first heuristic H1 states that two addresses that
appear in two inputs of the same transaction must belong to
the same user. This mostly holds, as usually only a single
user creates the transaction. Two additional heuristics try to
determine the output coin that belongs to the payer, e.g.,
that returns the change to the payer. Heuristic H2 applies if
exactly one address of the outputs has never been previously
used in other transactions. In this case, it can be assumed
that this is a freshly generated address for receiving the
change. Heuristic H3 applies if exactly one output is smaller
than any input. If the change output was larger than any
input, the input would not need to be included and the
transaction size could be reduced, leading to less fees.

To obfuscate the trail of a coin that is the result of ap-
plying these heuristics, mixing techniques were developed.
In general, mixing is a process where multiple coins of
different users enter a system and each user receives back
a coin that he originally did not posses. The mixing is
successful if nobody can learn which user received which
coin by examining the blockchain.

One concept to realize mixing are CoinJoin transactions.
In a CoinJoin transaction, multiple users contribute inputs
and outputs to a single transaction, for example by using
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Figure 2: Example of a CoinJoin transaction with two sub-
transactions. Each sub-transaction has two inputs and two
outputs. There are two valid mappings, the second mapping
is a derived mapping and can be created from the first, a
non-derived mapping.

the same mixing service. Figure 2 shows an example. Alice
would like to transfer 25 bitcoins using two coins of value
21 and 12 she owns, resulting in input ¢; and <5, output
01 and output oo that contains her change. Bob would
like to transfer 50 bitcoins using two coins of value 36
and 28, resulting in input i3 and 74, output os and output
o4 that contains his change. Mapping 1 shows the sub-
transactions of Alice and Bob, whereas Mapping 2 shows the
complete CoinJoin transaction. Our definition of mapping
will be explained in Section 4 and is not important in this
context. Technically, CoinJoin transactions are no different
from normal Bitcoin transactions.

3. Related Work

As a context for this paper, we will discuss related work
in this section. We present findings on the anonymity of
Bitcoin, as well as approaches on how to improve it.

To deanonymize users, information can be collected
from the blockchain itself and from the P2P network of
Bitcoin clients. While information gathered from the P2P
network requires an active attacker, there is already a lot
of implicit information on the blockchain, which can be
retrieved by anybody any time. Reid and Harrigan [3]
construct the graph of transactions and use heuristic H1 to
link addresses. Subsequent works additionally use heuristics
H?2 and/or H3, include information found online [4], [5],
as well as global properties of the graph [6], and combine
these approaches into an automated tool [7].

To mitigate these attacks, the community developed
methods of mixing coins of multiple users. Initial approaches
were centralized services, which were improved by adding
accountability [8] and preventing the service from learning
address connections [9]. Newer approaches are often real-
ized as P2P mixing, based on concepts like CoinJoin [18]
or CoinSwap [19]. Example include CoinShuffle [12], Coin-
Shuffle++ that uses DiceMix [16], CoinParty [11] and
Xim [10]. However, all approaches require the users to mix a
fixed amount of bitcoins. As users want to transfer arbitrary
amounts of coins, mixing and transferring coins have to



be separate steps. Therefore, current mixing approaches all
require extra transactions to prepare coins for mixing and to
mix the coins, which introduces additional delay and fees.

New cryptocurrencies solve these problems by design
[20], [21], [22], [23], [24]. They can hide sender, receiver
and sometimes even the amount of a transaction while still
allowing anyone to verify its correctness. Some approaches
include similar mechanisms as CoinJoin [14], [15] and
propose splitting outputs to obfuscate links between coins in
a scheme they call knapsack mixing. However, they are not
backwards compatible, rely on new cryptographic methods
and introduce overhead compared to Bitcoin. It is therefore
unlikely that they will replace Bitcoin anytime soon.

Some of their concepts are discussed in the Bitcoin
community and may be backported if compatibility allows
it. One example is Confidential Transactions, that enable
transactions with hidden amounts. ValueShuffle [25] is an
improved version of CoinShuffle++ that uses Confidential
Transactions in CoinJoin transactions. The authors highlight
that this allows to perform transactions and mixing in a sin-
gle step, eliminating the separate coin mixing step. However,
as they rely on Confidential Transactions, their approach is
currently not Bitcoin-compatible.

We argue that being able to transfer and mix coins in a
single step is a crucial requirement for a mixing scheme that
can be enabled and used by default for all transactions. In
this paper, we analyze how output splitting algorithms that
implement knapsack mixing and are compatible with Bitcoin
today, can be an alternative to Confidential Transactions in
mixing schemes like ValueShuffie.

4. Analysis

In this section, we analyze the anonymity provided by
naive CoinJoin transactions with arbitrary amounts. In order
to find the linked inputs and outputs belonging to the sub-
transaction of one user, we search for a set of outputs with
the same sum as a given set of inputs. This is equal to
solving the subset sum problem and a special case of the
knapsack problem. Saxena et al. [14] as well as Noether et
al. [15] also discuss this issue and call it knapsack mixing.
Both propose splitting the outputs into smaller parts to create
a difficult instance of this problem but do not expand on the
idea. We examine such output splitting in Section 5, using
the model and the methods introduced in the following.

4.1. Model

For analyzing the anonymity provided by knapsack mix-
ing, we developed a model that describes CoinJoin trans-
actions. It omits the fees to simplify the model and the
analysis. Our results will therefore be a lower bound to
the complexity of analyzing real CoinJoin transactions. In
practice, the analysis of CoinJoin transactions by an attacker
will be even more difficult.

A CoinJoin transaction T' = (I, O,v) consists of inputs
I ={i1,...,i,} and outputs O = {o1,...,0p,}. All coins
C = I UO are assigned an value v : C — [0..254 —1].

As we do not consider fees, the summed value of all input
coins must be equal to the summed value of the output coins
S 0(i) = Yo v(0).

A CoinJoin transaction consists of sub-transactions t,
each consisting of inputs I} and outputs Oy. To use existing
heuristics for transaction graph analysis, we need to decon-
struct it into its sub-transactions. However, we do not know
how many sub-transactions there are in a given CoinJoin
transaction. We only know that the sum of the inputs of
a sub-transaction must be equal to the sum of its outputs
and that no input or output can appear in more than one
sub-transaction. Therefore, there must be at least one way
of partitioning all inputs and outputs, so that each subset of
inputs has exactly one corresponding subset of outputs with
which it forms a sub-transaction. We call this a mapping, as
it maps inputs to outputs.

To denote the set of all possible partitions of a set .S
we write ®(5). A mapping M = (Z,O,m) consists of a
partitioning of the inputs Z € ®(I) and a partitioning of
the outputs O € ®(0). It furthermore consists of a bijective
projection m : Z — O such that VI € Z,),;v(i) =
> oem(n) (0), ie., the sum of one input set is equal to
the sum of its related output set. We denote the set of all
mappings by M.

Each CoinJoin transaction has at least one valid mapping
where Z = I and O = O, i.e., it consists of only one
sub-transaction. Intuitively, this mapping is unlikely to the
represent the original sub-transactions, except if it actually
was not a CoinJoin transaction but a normal transaction.
Each mapping that contains more than one sub-transaction
can always be used to construct a new mapping by merging
two sub-transactions. We call a mapping that can be created
from another mapping a derived mapping and a mapping
that can’t be created from another mapping a non-derived
mapping. Figure 2 depicts an example CoinJoin transaction
and its two possible mappings.

Based on the definition of a mapping, we define the
probability p;;(i1,42) that two inputs belong to the same
sub-transaction as the number of mappings where the input
11 and 79 are elements of the same subset in the input
partition, divided by the total number of mappings.

i1,92 € I, prr(in,ig) =
M = (Z,O,m) e M|ITET i1 iz €1}
|M|

The probability poo that two outputs belong to the same
sub-transaction can be defined correspondingly.

We define the probability pro (i, 0) that an input coin and
an output coin belong to the same transaction as follows. It
is defined as the number of mappings where the input ¢ is in
a subset of the input partition that is assigned to the subset
of the output partition of which o is an element, divided by
the total number of mappings.

’L'GI,OGO, pjo(i,O):

{M=(Z,0,m)e M |ITeT:icIAhoem(I)}
M|




Listing 1: Algorithm for finding valid partitions

def find_partitions (S, sums):
results = []
for subset in power_set(S):
if not sum(subset) in sums:
next

partitions = find_partitions (S — subset, sums)

for partition in partitions:
results .add ([ subset] + partition)
return results

4.2. Complexity

The complexity of finding all mappings depends on
two already known problems, the problem of enumerating
possible partitions of a set, and the subset sum problem.

The number of possible partitions of a set of size n is
the Bell number B,, which is recursively defined as B,, 11 =
> i—o (%) Bx. An upper bound for Bell numbers has been
provided [26] with B,, < (;727%y)" To find all matching
input partitions and output partitions, a brute-force algorithm
would have to iterate all input partitions and for each of
these all output partitions. For each input-output partition
combination it must furthermore compare the size of the
sets. For n inputs and m outputs, this would result in an
asymptotic run time of O((%)” X (%)m X N X m).

However, in practice the search for matching partitions
can be optimized. Not all partitions are candidates for a
mapping. For example, input partitions that include a set
with a sum that is not a sub sum of the outputs cannot
be part of a mapping. Therefore, instead of iterating all
possible partitions, we perform a depth first search with
abort criterion. The algorithm iterates all possible subsets
and for each subset that has a sum which is a sub sum of
a given set, it recursively calls itself with the remaining of
the set. A pseudo code example is shown in Listing 1.

This still means that we have to at least iterate all
possible subsets, e.g., the power set, which is of size 2"
for a set of size n. Therefore, we assume that the lower
bound for complexity of finding all mappings in the best
case where no partitions are valid is at least O(2"*m) where
m is the time it takes to solve the subset sum problem for
each set. As can be seen in Figure 3, the runtime of our
evaluation program does indeed grow exponentially, which
supports our assumption.

4.3. Evaluation

To evaluate the anonymity provided by CoinJoin transac-
tions, we generated sample transactions and analyzed them.
The coins used in the CoinJoin transactions were chosen
at random following an approximated distribution of the
bitcoin values used in actually observed transactions. We
generated the distribution by reading all output values from
the blockchain up until March 2017. The values where
sorted into buckets of size 1000, to arrive at a discrete
cumulative distribution function as show in Figure 4.
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Figure 3: The processing time for calculating all map-
pings for a CoinJoin transaction. For each number of sub-
transactions there is one line and on the x-axis the number
of inputs per sub-transaction are marked.
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Figure 4: The discrete cumulative distribution function of
the coin values in the Bitcoin blockchain.

CoinJoin transactions are generated by generating sub-
transactions based on this distribution. For each sub-
transaction, a parametrized number of inputs is generated
and two outputs, as is in regular transactions. The first
output’s value is chosen randomly to be smaller than the sum
of the inputs and the second output’s value is the remaining
difference. The sub-transactions are then merged. In Section
5 we discuss how we add mixing to it.

After generating the CoinJoin transaction, all possible
mappings are calculated. Our program implements the al-
gorithm shown in Listing 1 to search valid partitions. We
collected all possible input partitions using this search al-
gorithm filtered by the possible subset sums of the output
set. Respectively we collect all possible output partitions,
filtered by the subset sums of the input partitions. As the
set of all possible subset sums is too large to fit in memory,
we use a search algorithm that does not precompute them.
To further speed up the search, we initially store all possible
subset sums in a Bloom filter that we query first and only if
it returns a (possibly false positive) match we do an search
for the sum. Finally, we iterate the found input and output
partitions, to find matching partitions, e.g., an input partition
of the same size as the output partition where each set in
the input partition also has a unique matching set in the
output partition. These matching partitions then constitute
the possible mappings of the given CoinJoin transaction.
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Figure 5: The number of non-derived mappings for CoinJoin
transactions that have not been mixed.

As derived mappings can be constructed from the non-
derived mappings, by merging sub-transactions they do not
provide additional information. We assume that including
derived mappings will diffuse the results, as for example
the mapping where all inputs and outputs form one sub-
transaction will always be contained and will always link all
inputs and outputs. Therefore, in the rest of the evaluation,
we only use the set of non-derived mappings.

To compensate the random coin values, we performed 32
runs for each parameter combination. The probabilities are
then calculated for all input-output, and input-input pairs
as defined previously. We aggregate the probabilities for
each run by counting all pairs where it is 1 or 0, and
by calculating the mean over all pairs. Furthermore, we
aggregate the results for all runs with the same parameters
by calculating the mean and the 95% confidence interval.

Figure 3 shows the processing time for calculating the
mappings dependent on the number of sub-transactions and
inputs per sub-transaction. As it grows exponentially with
the number of sub-transactions and inputs, we only generate
CoinJoin transactions up to a size of about 25 inputs.

Figure 5 shows the number of non-derived mappings
for CoinJoin transactions, depending on the number of sub-
transactions and the number of inputs per sub-transaction.
For all number of sub-transactions with two inputs, there
is generally only one non-derived mapping. With increas-
ing numbers of inputs, the average number of non-derived
mappings and the confidence interval grows.

The exponential complexity of determining possible
mappings is already improving anonymity, as attackers
would have to spend a high amount of computing power
when analyzing the transaction graph. This approach can
be used to mix any transaction and therefore used on every
transaction. If implemented in the standard clients, the num-
ber of CoinJoin transactions would increase continuously.
As a result, the required computation power to analyze all
CoinJoin transactions could outpace the available compu-
tation power. In a sense, this would be similar to the way
Bitcoin is protected against manipulation of the transaction
history by requiring increasing amount of hashing power.

As each non-derived mapping is a possible candidate for
the original composition of sub-transactions, a low number

of non-derived mappings indicates a low level of privacy. For
small unmixed CoinJoin transactions there generally exists
only one non-derived mapping and therefore the original
composition of sub-transactions can be unambiguously re-
covered. Larger CoinJoin transactions seem to have more
non-derived mappings, however this is only a mean value
and the confidence interval is quite large. In our results,
we see many of these transactions with only one possible
non-derived mapping. An attacker can then assume that this
non-derived mapping represents the original composition of
sub-transactions and apply heuristics H1, H2, and H 3 to the
sub-transactions. Users might therefore be deanonymized as
if they were not mixing at all.

5. Knapsack mixing

As we show in the previous section, CoinJoin transac-
tions with arbitrary values will generally only produce one
non-derived mapping. This mapping likely represents the
original composition of sub-transactions and can be used
to apply existing heuristics for transaction graph analysis.
In this section, we investigated how outputs can be split to
mitigate this situation, based on the knapsack mixing idea.

5.1. Mixing algorithm

Our algorithm tries to split outputs so that different out-
put sets can be constructed for the same input set. It achieves
this by splitting a single output when two transactions are
merged. The difference between the sum of the two sets is
calculated and one coin of the larger set is split to produce
this difference. The new coin with the value of the difference
can then be added to the smaller set to produce a new set
with the same sum as the originally larger set.

Figure 6 depicts the result of applying this algorithm to
the example CoinJoin transaction from Section 2. The output
o3 of the original CoinJoin transaction has been split into
outputs o3 1 and oso. Output o3 has the value 31 which
is the difference of the input sets and o35 contains the re-
maining Bitcoins. Two non-derived mappings were created,
and it is not possible to tell which represents the original
sub-transactions. A generalized algorithm that handles edge
cases is shown in Listing 2. This algorithm can be applied
recursively while merging multiple transactions.

However, we notice, that it only decreases the linkability
of input-output pairs and not the linkability of input-input
pairs. The reason for this is, that our algorithm only produces
new output sets with the same sum than existing output
sets. Hence, only input sets with the same sum than without
mixing will be found. It can be easily fixed by randomizing
the input sets before applying the output splitting algorithm.
The algorithm of splitting outputs must then be slightly
adjusted to handle more edge cases. Listing 3 shows the
adjusted mix_transaction function. The function to
realize the sub sum in one output set stays the same.



Listing 2: Simple output splitting algorithm

def mix_transactions(t_a, t_b):
if sum(t_a.inputs) == sum(t_b.inputs):
return Transaction (
inputs = t_a.inputs + t_b.inputs,
outputs = t_a.outputs + t_b.outputs)
new_inputs = t_a.inputs + t_b.inputs
if sum(t_a.inputs) > sum(t_b.inputs):
diff = sum(t_a.inputs) — sum(t_b.inputs)
new_outputs = realize_subsum (t_a.inputs,
diff)
new_outputs += t_b.inputs
if sum(t_b.inputs) > sum(t_a.inputs):
diff = sum(t_b.inputs) — sum(t_a.inputs)
new_outputs = realize_subsum (t_b.inputs ,
diff)
new_outputs += t_a.inputs
return Transaction(inputs = new_inputs,
outputs = new_outputs)

def realize_subsum (coins, subsum):
result = []
for coin in coins:
if subsum == 0:
result.add(coin)
elif coin <= subsum:

result.add(coin) 2 sub-trans.
subsum —= coin 3 sub-trans.
elif coin > subsum:
result.add(subsum)
result.add(coin — subsum)
subsum = 0
return result
Mapping #1 Mapping #2

Figure 6: Example of a CoinJoin transaction with two
sub-transactions after splitting the outputs. It is the same
CoinJoin transaction as shown in Figure 2. The original
output 3 has been splitted into two new outputs 3.1 and
3.2. Mapping 1 and mapping 2 are now both non-derived,
the trivial, derived mapping that can be constructed from
each has been omitted.

Listing 3: Output splitting algorithm with input shuffling

def mix_transactions(t_a, t_b, num_inputs):
if sum(t_a.inputs) == sum(t_b.inputs):
return Transaction (
inputs = t_a.inputs + t_b.inputs,
outputs = t_a.outputs + t_b.outputs)
new_inputs = t_a.inputs + t_b.inputs
random . shuffle (new_inputs)
random_sum = sum(new_inputs [: num_inputs])
while (random_sum >= sum(t_a.outputs)
&& random_sum >= sum(t_b.outpus)):
random . shuffle (new_inputs)
random_sum = sum(new_inputs [: num_inputs])
if sum(t_a.outputs) > random_sum:
new_outputs = realize_subsum (t_a.outputs,
random_sum )
new_outputs += t_b.outputs
if sum(t_b.outputs) > random_sum:
new_outputs = realize_subsum (t_b.outputs,
random_sum )

else

new_outputs += t_a.outputs
return Transaction(inputs = new_inputs,
outputs = new_outputs)

def realize_subsum (coins, subsum):
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Figure 7: The number of non-derived mappings for CoinJoin
transactions that have been mixed with our simple input
shuffling algorithm.

5.2. Evaluation

As in Section 4.3, we generate CoinJoin transactions.
This time we use our simple output mixing algorithm and
the input shuffling algorithm to mix sub-transactions while
they are merged. Examining the results, we notice that
the average probability of inputs and outputs being linked
increased. However, it is unclear what the significance of the
average probability for the anonymity provided by CoinJoin
transactions is. Therefore, we focused on the average num-
ber of input-input and input-output pairs that can be linked
with probability p = 1. They provide reliable information
to an attacker and could be used to apply heuristic H1, H2
or H3.

Figure 7 shows the number of non-derived mappings
after applying our input shuffling output splitting algo-
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rithm, equivalent to Figure 5 from Section 4.3. Even for
mixed CoinJoin transactions with a low number of sub-
transactions, the number of non-derived mappings is reliably
greater than one. With growing number of sub-transactions,
the number of non-derived mappings increases.

Figure 8 depicts the number of input-output-pairs linked
with probability p;o(i,0) = 1 in CoinJoin transactions
with 5 sub-transactions, depending on the mixing algorithm
used. Compared to unmixed transactions, the simple output
mixing algorithm produces a significantly lower number of
pair with probability p;o(i,0) = 1 and the input shuffling
does not improve this much further. Similar, in Figure 9
the number of input-input-pairs linked with probability
prr(i1,i2) = 1 is shown. Here, the simple output mixing
algorithm does not decrease the number of input-input-
pairs with probability prr(iy,ie) = 1 significantly for low
numbers of inputs, whereas the input shuffling does.

As our results show, the input shuffling mixing algorithm
produces multiple non-derived mappings and only a small
number of coin pairs with linking probability p = 1.
Therefore, an attacker can no longer unambiguously re-
construct the sub-transactions. Heuristic 1 might still be

used for input-input pairs that are linked with a probability
prr(i1,i2) = 1. However, as the full sub-transactions cannot
be known, heuristics H2 or H3 can no longer be used.
This means that an attacker might be able to link a small
number of pseudonyms in one transaction, but not across
transactions. Therefore, we have high confidence that it
succeeds in generating CoinJoin transactions which provide
anonymity despite using arbitrary valued coins.

6. Discussion

As shown by our evaluation, in naive CoinJoin transac-
tions with arbitrary values the original sub-transactions can
usually be recovered. Therefore, they only provide some
form of computational anonymity given a large-enough
number of inputs and outputs. Using our simple mixing
algorithms, enough ambiguity can be introduced to make
linking highly unlikely for most of the coin pairs, regardless
of available computation power. While some can still be
linked, not knowing the complete sub-transaction prevents
the use of heuristic H2 and H 3. Therefore, it is not possible
to tell which outputs have the same owner as certain inputs.
Assuming no Bitcoin addresses are reused, this prevents
linking coins to the same owner across multiple transactions
and renders information gained by H1 less useful.

Our analysis and evaluation shows an exponentially
growing time required to analyze CoinJoin transactions.
While speedups probably can be achieved, our model con-
stitutes a simplification. We expect analyzing real CoinJoin
transactions to be even more expensive for two reasons.
First, we only look at non-derived mappings while it might
be possible that the original composition is one of the
derived mappings. Second, real CoinJoin transactions would
include fees and analyzing them would require comparing
set sums not by equality but by their difference. This will
increase the runtime and also will introduce a difficult trade-
off when choosing the threshold when comparing sums.
A small threshold will result in less possible mappings
but might not produce the original composition of sub-
transactions. A large threshold will result in additional map-
pings, which we assume will decrease the probability of two
coins being linked.

Our work only presents algorithms to implement knap-
sack mixing for CoinJoin transactions. To employ our ap-
proach, it must be used in an CoinJoin-based mixing pro-
tocol. Similar to ValueShuffle, the DiceMix [16] protocol
could be used to for the P2P communication. As we are
splitting outputs, we need to be able to generate new Bitcoin
addresses for the payee. To facilitate this without requiring
interaction, stealth addresses [17] could be used.

The resulting P2P mixing protocol would be compatible
with Bitcoin today. As transactions and mixing now happen
in a single step, all overhead of Bitcoin transactions com-
pared to previous approaches is reduced. This translates into
lower costs and faster mixing. Furthermore, it can be used
for any transactions and could be implemented as default in
standard Bitcoin clients.



However, currently, our output splitting algorithm re-
quires knowledge of all sub-transactions. Using it in a P2P
network would likely leak information to all participants. We
are already researching a new output splitting algorithm, that
mitigates this problem. First findings show that it provides
at least as much anonymity as the input shuffling algorithm.
Alternatively, this problem could be avoided by employing
secure multiparty computing.

Our analysis also only considers CoinJoin transactions
in isolation. It is currently unclear whether the linkability
can increase when the analysis is extended to the whole
transaction graph, which is left open for future work.

7. Conclusion

In this paper, we show that regular CoinJoin transactions
do not provide anonymity if participants want to transact
arbitrary values. Using our model, we are able to deconstruct
them into the original sub-transactions, based on the unique
coin values.

As a solution to this problem, we propose a novel output
splitting algorithm that implements the knapsack mixing
idea. Furthermore, we define metrics for estimating the
anonymity of CoinJoin transactions and evaluate the mixing
algorithm by generating and analyzing transactions. The
results show that our algorithm reliably prevents unambigu-
ously recovering the original sub-transactions. Only a small
number of coins remain linkable. Existing transaction graph
analysis heuristics can therefore no longer be used.

Our algorithm allows mixing with arbitrary values in
a way that is compatible with Bitcoin today. This enables
peer-to-peer mixing protocols that can be used by default
for all transactions. In contrast to previous approaches, such
a mixing protocol would not require additional transactions
and thus reduce delay and fees.
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